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AVERAGING NETWORK ELEMENTS
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I. INTRODUCTION

The most extensive cave systems known are
networks containing hundreds of passage loops.

Cave surveyors consider them the ultimate data-
processing challenge when, in fact, the extra
informabion contained in loops should make the
surveying task somewhat easier. The difficulties
traditionally presented by survey networks relate
to two fundamental questions.

First, whal is the best way to combine
redundant and inconsistent field measurements in
order to obtain accurate estimates of location?
("Adjustment" is the surveyor's term for forming
final estimates from inconsistent measurement
data.) Any procedure should first provide a way
to screen out "bad" measurements by somehow
comparing them with the entire aggregate of
available data. Second, given whatever algorithm
we use for obtaining unambiguous results, how
can we objectively judge survey accuracy?

In this article I will describe a computer
program, NET3, that solves large nebwork
problems by means of an unusual least squares
algorithm. I say the algoribhm is unusual because

I have not seen a pubtished description of
anything similar, yet for certain applications it is
more efficient and direct than standard methods
based on Gaussian elimination. NET3, in
particular, is compact enough to run on small
personal computers and quickly process networks
having several hundred nodes.

My goal in writing the program was to
eventually include it in a larger package to help

cave surveyors organize and present their data'
This application is rather specialized, but it
provides a clear demonstration of the algorithm
while representing an important class of
computing problems: connecting simple elements
bogether so that some quantity in the final object
is minimized while certain constraints are

satisfied exactly. As a simple example, consider
the following one-dimensional network problem:

Suppose you wanted bo estimate the length of
a ladder with 20 irregularly spaced rungs. The

only data available are a number of independent
estimabes of the distances between various pairs
of rungs -- for example, between rungs 1 and 5, 1

and 8, 5 and 15, 8 and 15, 1.5 and 20, 8 and 20,

and 5 and 20. In addition, each estimate has an

associated error variance, a statistical measure of
precision. Since the estimates are independent
they are quite likely inconsistbnt, meaning that
lengths "(x to y)" fail to meet the constraints

to8)+(8tol5),
to Z)),
to 20).

The function of NET3 is to take these data
and replace them with a new set of consistent
estimates, each reflecting the lolal information
available and having an optimally small error
variance (which the program also pr'rvides)' The

ladder's length could be derived by adding the
1-to-5 and 5-to-20 results. Or better, we could

include a dummy ("infinite variance") 1-to-20
estimate in the original data, enabling us to

obtain a variance for our final length estimabe.

A more realistic program input might consist

(1to 5)+(s to15)=(1
(s to 1s) + (15 to 20) = (5
(8 to 15) + (15 to 20) = (8
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of hundreds of displacement estimates. Also, the
network is generally multi-dimensional, with each
displacement being a vector with an associated
variance-covariance matrix.

In describing the solution method I will try to
address two groups of potential readers:
surveyors interested in map accuracy, blunder
debection, and data processing, and numerically-
inclined programmers who might like to
experiment with another equation solving method.

II. THE LEAST SOUARES MODEL

There exists a nice theoretical framework,
Iinear model theory, for solving problems in
measurement. Though usually associated with
the popular "least squares" mefhod, it is not
always a straightforward arithmetic operation. In
order to apply it correctly we must first define a
set of "observed quantities" (i.e., a set of suitably
scaled and transformed measurements) in such a
way that they are described reasonably well by a
linear statistical model. When least squares is
misused (or not used at all), the effect is to throw
away potentially useful information, or to
overlook spurious data that a comparison with
the model might have revealed.

The basic principle, nonetheless, is simple
and intuitive: if you were to throw ten darts aL a
door, another person could estimabe from the'
cluster of darts not only the spot that you were
aiming at, but also bhe consistency of your aim,
Such estimates are desired often enough that
pocket calculators are commonly equipped with
mean and standard deviation keys. Beginning
with K. F. Gauss (who in fact originated the least
squares method in 1809 to solve a surveying
problem), mathematicians have extended the
theory of "averaging" to include situations where
the elements combined are not just independent
samples of one unknown quantity, but instead are
correlated observations, each being a distinct
function of possibly many unknown quantilies.

When the theory is applied rigorously to
network problems, it can entail a lot of
arithmetic. The well known compuLer algorithms
require workspace and processing time
proportional to the square of rhe number of nodes,
or loop junctions, in the neLwork's largest loop
system. In the next section I will show how to
reduce the constant of proporbionality [o less than

ten percent of its usual value' The numerical
method we will use is efficient because it takes
special account of the way network observations
piece together.

III. SOLUTION ALGORITHM

The fundamental task |o be performed is the
leasb squares estimation of quantities "over-
determined" by observations -- a reasonable way
to average information while giving more weight
to data elements that are more reliable or more
precise. We really want more than just an

average, however; the network equivalent of
"variance" can be used to detect blunders and to
judge survey accuracy. From the programmer's
standpoint, this means the partial inversion of
sparse symmetric matrices. (A matrix is sparse if
most of its elements are known to be zero.)

The multi-purpose numerical packages

installed at most computer centers can usually
solve such problems; however, I know of none

that are efficient enough to run on personal
computers and still handle networks of signifircant
size. The program described here, NET3,
manages to do this by taking an unusually direct
route to the solution -- by constructing the partial
inverse immediately from network observations,
withoul bothering to set up the original mabrix to

be inverted. It can, in effect, quickly invert
matrices of order several hundred while using
only a few thousand bytes of system memory
(RAM) for data storage.

More specifically, NETS' obtains network
solutions by sequentially modifying the variance-
covariance malrix in a least squares linear model.

Instead of computing the entire mabrix, the
algorithm maintains, after each step, only lhose
components necessary for updating selected point
displacements and their variances while the
remaining observations (vectors) are added to the
model. This method of solving least squares
problems is not likely to be found in any textbook,
although the relevanb equations can be derived
from a familiar matrix identity which is easy to
prove (Ref 2). The equalions and cerfttin other
details of the NET3 implementation are given in
Appendix B.

The algorithm builds up the solution network
from component vectors in a step-wise fashion,
similar to the way survey measurements are
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obtained in the field. At each step the nodes
already present in the network belong to two
groups: "border" nodes, which connect to vectors
still remaining to be added, and the "interior"
nodes. The border nodes are represented as row-
columns of a variance- covariance matrix, Q,
while only those interior nodes for which final
displacement/variance information is needed are
represented as rows (not columns) of Q. Thus, the
numbers of rows and columns may vary either
way as the network is generated.

Program execution time is roughly
proportional to the number of independent circuifs
(ciosures) in the network times the average
number of components in matrix Q when a vector
between existing nodes is added. Depending on
component lype, space used is a multiple of the
maximum number of rows times the maximum
number of columns in Q, the latter being the
problem's "bandwidth" (not to be confused with
the bandwidth of the corresponding normal
equation matrix, which is generally larger). Since
the amount of high-speed computer memory
available will limib the size of solvable problems,
NET3 incorporates a vecbor sequencing algorithm
that tends to produce small bandwidths. (It does
this by preventing the unnecessary accumulation
of border nodes. See Appendix C.)

Cave surveyors can obtain a good idea of
what bandwidth is by imagining having to survey'
a rnaze cave while carrying a container of
unlabeled tags for use as station markers. It iq

understood that whenever all vectors to or from
any one stafion have been measured, the station's
tag will be returned to bhe container for later re-
use. The bandwidth corresponding to the
surveyor's particular plan of attack is simply the
total number of tags he requires to complete the
survey.

IV. DESCRIPTION OF NET3

NETS, Version 8-82, was developed for use
with Digital Research's CP/M-8O and CP/M-86
operating systems. The source language is Pascal
and the compiler is Pascal/MT*, Version 5.5
(CP/M-S0 version), also supplied by Digital
Research.

The program reads a text file, each line of
which defines an observed vector between two
named positions (nodes) irnd an observation error

variance. In a survey, for example, the vector
could have resulted from actual distance,
azimuth, and inclination measurements linking
the two nodes or, more typically, from a sequence

of componenb vectors joined head to tail, in which
case the variance is the sum of component
variances. The vector could, in fact, represent an
entire network processed earlier by this program.

A vector may be flagged (with "+") to
indicate that no actual observation exists between
the named endpoints but that information about
their relative location and final variance is

wanted. (Assigning a very large error variance
would have the same effect.) Conversely,
observed vectors flagged with "-" will be omitted
from representation as soon as they are used to

update the network. This allows networks, which
would otherwise be loo large for a simultaneous
solving for all unknowns, to be correctly processed

when oniy partial information about them is
needed.

The program's output is similar to the input,
except that each observed vector (not flagged with
"-") is replaced by an estimated "network
displacement" between the two endpoint nodes --

the result of using the weighted least squares

criterion for combining the information contained
in all vectors in the file. (An observation "weight"
is the inverse of its error variance') Likewise,
each observation error varianpe is replaced by the

"network variance" between the nodes, which is
actually the variance of the corresponding dis-
placement esbimate assuming the error variances
are correct. A motive for using the least squares
method of estimation is that the resulting
network variances are optimally small given

certain reasonable assumptions. (This is the
famous Gauss-Markov Theorem. See Ref 4 for
details.)

Aiso provided is the sum of squares of
weighted adjustments (residuais) for each vector
dimension (SS[i],i= 1..Dim), along wiLh the
number of independent circuits, NC. A useful
indicator of data consistency is bhe Unit Variance
Estimate,

UvE = (SS[1]+..+SSlDim]) / (tlC*Dim).

If the UVE is much larger than one then bhe

observations do not fit the model, suggesting the
presence of blunders or systematic errors. (N'Iost
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statistical tests are based on the hypothesis that
SStil has a Chi-square distribution with NC
degrees of freedom.) Otherwise, if it is assumed
that the furnished error variances are correct
apart from a common scaling factor, the UVE is
an unbiased estimate of the variance scaling
factor. For a three-dimensional survey, it is
convenient to split the UVE into vertical and
horizontal parts. Also, see items 4 and 5 in
Appendix A, "Notes on Variances".

More specific instructions regarding file
formats are given in bhe NET3 fJser's Guide
(Appendix D).

Note Concerning Application

The one-dimensional survey problem is
isomorphic to a DC electrical network, where the
observed displacements and variances are voltage
sources and element resistances, respectively.
The resulting network displacements and
variances are the potential differences and total
network resistances between nodes. The sum of
squares is the power dissipated in the circuit.
With minor revisions the program can be
adapted for the solution/inversion of symmetric
matrices. (If negative "variances" are allowed,
the matrices need not be positive-definite.)

Capacity

The number of represented nodes is currently
limiled bo 255 minus the network dimension"
which allows the use of byte-sized pointers in
several arrays. The maximum number of vectors
will be calculated and should never be a
constraint. The compiled code, run time support,
and static data will occupy 18-20K bytes of
memory, leaving about 36K for dynamic data in a
bypical 64K CP/M system. Of the latter space we
will use

(4*(Dimt1)+5)*t{V + 4*Br}(BL+Dim) bytes,

where Dim is the nebwork dimension, NV is the
number of vectors, and BL and BW are the
maximum numbers of rows and columns,
respectively, in Q. If the algorithm were adapted
to use disk storage (by saving border node sub-
matrices when Q becomes too large), then lhe
practical minimum RAM requirement (for Q)
would be 4'r'31ry't(BW*Dim* 1). However, for
typical sparse networks, BW is only 5- loo/o of the

number of nodes, which means that networks of
more than 200 nodes can easily be solved in a

miclocompuLer's main memorY.

There exists a version of bhe program that
stores Q in multiple banks of extended memory
starting at a selecled 64K bank, in which case Q
may contain 65536 real numbers. Execution lime
is increased by about 5 percent. Use is made of
Compupro's 8085/88 dual processor board and a
customized CP/M BIOS. In addition, bhe 1/2-Meg
and 1-Meg "semiconductor disks" now on the
market are byte-addressable and would require
very little software work to interface.

Accuracy

In the above formulas tt 4't refers to the
4-byte, AMD-9511 formatted, floating point
numbers, which have about 6.5 decimal digits of
precision. When solutions for several survey
networks were compared with the corresponding
14-digit results from a Cyber 1751750, the first 6

or 7 digits agreed. The algorifhm is unusually
stable because the normal equations are not
formed and because the elements of a
(covariances) in our case happen to be positive
numbers of small range. It also helps that we are
usually solving for displacements and variances
between adjacent nodes, not values with respect
to an arbitrary reference.

Performance with an Example Problem

ELLIPSE, a more complete survey data
processing program, fir'st organizes sight vectors
into strings and strings inbo independent loop

systems before bhe solution method is finally
applied to each system separately. An unusually
large loop system for a cave survey is bhe North
Maze of Cueva de Kaua, Yucatan, which I've
often used as a benchmark fo compare mebhods.

It has 352 sbrings, 199 junctions (nodes), and 154

loops. By starting at the base survey stabion and

making no attempt to optimally sequence t'he

veclors, I used ELLIPSE lo generate an input file
for NET3. The bandwidth, without sequenctng,

was found Lo be 72, and an older one-dimensional
version of the program required 24.5 minutes for
a complete soluLion using extended memory and
software arithmetic (16.7 minutes with a 9511
math chip).

By experimenting with the sequencing
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algorithm now incorporated in NET3 (see

Appendix C for details), it was found that a

bandwidth of 11 was possible with any of 27

starting nodes. The numbers of starting nodes

that provide each bandwidth are as follows:

BAI{DIIDTH: 11 12

FREQUET{CY: 27 42

In this example the mean bandwidth is 14.3,
with 27 percent of the nodes producing
bandwidths greater than 15, the largest being 22.
(t also apptied the Reverse Cuthill- McKee
algorithm to all nodes in this system bo find a
minimal bandwidth of 22 for the normal equation
matrix.)

By choosing starting nodes with bandwidths
11, 15, and. 22, vector orderings were produced
that led to NET3 solution times (all three
dimensions) of 7.2, 7.3, and 8.4 minutes,
respectively, using software arithmetic. In the
first case, Iess than 30 percent of the (non-

extended) memory available for work area was
actually used.

Albhough sequencing from a specified node in
lhis example takes less than 10 seconds, it is
evident that examining all possible starting nodes
during each program run would hardly be
profitable. The current version of NET3 simply
takes the first vector endpoint as a starting nodei
If the resulting sequence requires too much
memory, the remaining nodes are examined ip
turn.

An important advantage of the algorithm is
its ability to effrciently solve for vector subsets, or
simply the UVE. In the above example, when all
vectors are flagged with "-", the program takes
30 seconds to process the vectors and output a
UVE. It would take a little longer to obtain a few
solution vectors.

The above times were achieved on a

Compupro 8085/88 Dual- processor based system
running at 6 Mhz. (The software runs on [he
8085.)

V. FURTHER INFORMATION

This is a review copy of an article Lo be

published in some form ol another. I want bo

thank Pete Lindsley, Robert Thrun, and N{artin

Heiler for their interest and support. If you would
like to share results of experiments using
different methods, programming languages' or
hardware, please contact me at the following
address: David McKenzie, 3300 Hemlock,
Austin, TX 78722.

IThis previously-unpublished manuscript
was writlen in December, 1982. --Ed.l
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APPENDIX A

NOTES ON VARIANCES

Computing the network'variances is more
difficult than computing the displacemenbs alone
-- in the same way Lhat inverting a matrix is

harder than "solving with respect to a right-hand
side". Surveyors who are uncertain about what
lhe variances are, or who doubt their usefulness,
should review bhe following: (The superscripts ""'
and "-" denote the matrix operations of transposi-
tion and inversion, respectively')

1) Consider a set of random vectors --
perhaps a set of line segmenls "vibrating" in such

a way fhat the length and orientation of any
segment at a fubure time can be characterized by
a probability function. Our objecbive might be to
estimabe from a sample, or snapshot, the means

of those vectors when the means are known to

form a connected nebwork. In other words, we

know which endpoints attach Lo which, but we

13 14 15 16 17 18 19 20 21 22

14 273 915 010 0 0 7
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also observe that the sampled vectors don'l quite
fir.

If our estimation method is a function of
the data alone, then our estimates will also be
random vectors with statistical properties. The
variance of a random vector is a measure of its
expected squared deviation from the mean.
Therefore, an additional goal might be to calculate
the variances of our estimated means when the
variances of the observed vectors have been
specified.

If we regard the error in a vector
observation as a column veclor whose components
are random variables with zero means, then the
error variance is defined as the expected value
(mean) of the error times its transpose. It follows
that our variances are symmebric nonnegative
definite matrices (or nonnegative numbers if the
network is one-dimensional). With the assumption
of normal distributions, we can view the elements
of this matrix as the coefficients of a quadratic
equation describing ellipsoidal surfaces of
constant error probability.

2) Suppose, for example, that a three-
dimensional random vector were viewed with
respect to the coordinate frame that aligns with a
particular sample, or observation, of that vector.
The random vector could then be considered bo

have "normal", "transverse", and "vertical" error'
components that are statistically independent
with variances Vn, Vt, and Vv, respectively. ThiE
assumption of independence would be realistic if
the vector were derived from three spherical-
coordinate measurements and the expected errors
were reasonably small. One scheme I've used in
ELLIPSE, a cave survey data processing
program that runs on a large mainframe, is to
assign default component variances with the
following formulas:

blunders, this practice effectively halves the

azimuth and inclination error variances')

If the observed vector were fortuitously
aligued with bhe positive X-axis of the survey
frame of reference, the estimated error variance
with respect to the X-Y -Z coordinate frame would
be the diagonal matrix

V = diag(Vn, Vt, Vv).

More generally, if lhe vector were not so

favorably aligned, but still had the same error
properties, its variance would have to be repre-
sented by the non-diagonal matrix

V = J * diag(Vn, Vt, Vv) * J"

where J is the rotation matrix that
transforms coordinates in the observed vector's
frame of reference to coordinates in the X-Y-Z
frame of reference. This matrix can be computed
from the observed vector, X = (x y z)', as

-ylLh -x*z/(LrLh) |

I

x/Lh -y*z/(L*Lh) | .

I

0 Lh/L I

(Note that J is ortho5ional: JJ' = J'J = I'
Also, programmers should prepare for the case

Lh = 0.)

A cave survey typically consisbs of many
long strings of such vectors. The variance of a

string (a vector sum) is obtained by simply
summing up the V matrices of the component
vectors.

3) A three-dimensional survey consisting
of spherical coordinafe measuremenbs can be

modeled as above. However, it is often more
practical to adjust the model slightly to

considerably reduce the computation cosLs,

especially when the et'ror variances ere rough
estimates to begin with. The leasl serious
perturbation is to reshape Lhe error ellipsoids so

that their planes of symmetry align with a

common coordinate sysbem. The variances then
become diagonal matrices and the network effec-

bively breaks into three one-dimensional
networks. (Martin Heller takes such an approach
in his pfogram, TOPOROBOT (Ref l). He solves

I xlL
I

J = lylL
I

I zlL

Vn = Vp,
Vt=Vp+Va*Lh
Vv=Vp+Vi*L

* Lhr
* Lr

where L and Lh are the observed vector's
total length and horizontal length, Vp is a target
positioning error variance, and Va and Vi are the
azimuth and inclination error variances in
squared radian units. (Sorne cave surveyors
record the average of a foresighr-backsight pair of
measuremenb sets. Besides guarding against
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for bhe location estimates but not for the network
variances.)

A rougher approximation is to assume
additionally that each ellipsoid has the same
shape (not size), in which case a simultaneous
solution for all coordinates is possible while
storing each variance as one number. For
example, assigning each error component a
variance proportional to vector length produces
the familiar'"compass rule" adjustment. So that it
can solve very large networks, this version of
NET3 is configured to represent variances as

nonnegabive real numbers; the benefits described
below can still be appreciated in most cases.

4) There are well-esfablished methods for
deriving conFrdence regions for location estimates
in linear models (Ref a). A-priori estimates of
precision are based on the network variances
alone, which depend on the observation variances
and how the network is connected bogether. How
well the observations fit the model is reflected in
the residual sums of squares, which can be used
to revise bhe network variances and to produce
post-priori confidence regions. (Usually, a

variance is revised by simply multiplying by lhe
UVE.)

To continue with the example in note 2,

observe that the relation

ErV-E = C,

where E is an error vector and C is a
constant, is the equation of an ellipsoid in the
components of E. The constant C = 7.81 gives us
a 95-percent confidence region for a 3-dimensional
error vector with mean zero and variance V. (The
corresponding C for dimensions one and two are
3.84 and 5.99, respectively.)

5) A powerful technique for detecting
blunders in observation data depends on knowing
how much each observaLion's sepirrate deletion
would reduce the sum of squares (Ref 2). The
availability of network variances allow bhese

quantities to be efficiently computed and
compared with what would be expected if bhere
were no blunders. Specifically, if an observed
vector X with error variance V were deleted from
a nebwork with corresponding displacemenb x and
variance v, the total sum of squares'
SS =SSI1] +.. + SS[Dim], would decrease by

59 = (X-x)'(V-v)-(X-x).

With the assumption of no blunders, the
statistic

p = (Se/Din) / ((SS-Se)/(Din*(Nc-1)))

has a "central F-distribution" with
parameters Dim and Dimi'(NC- 1). Thus,
observations with unusually large F-statistics (F

> > 1) can be considered suspect in a screening
procedure. (Note that the denominator in F would
be the UVE after deletion.) In addition, the
adjustment that would have been applied to the
observed vector if it had been assigned infinite
variance (zero weight) is easily obtained as

xe = - v(V-v)-(x-x).

In surveying, this vector (with sign
reversed) will often match a mistake discovered
later in transcribed field nobes. A simple error
analysis program, NETERR, was developed in

conjunction with NET3. It compares the input
and output files of NET3 to produce, for each

vector, the statistics Xe, F, and the UVE after
deletion. The current version works only with
3-dimensional data and computes separate
horizontal and vertical error statistics (See

Appendix E).

6) If A and B tr" dirti.r.t networks of
vectors with two nodes in common then the frnal
solution for A, when considered as part of the
combined neLwork, could be obtained by
representing B as a single vector "observation"
whose displacement and errcr variance had been

obtained by first processing B separabely bo get a
network displacement/variance between the two
attachment nodes. The result would be virtually
the same if all vectors in bobh networks had been

processed simultaneously. If NET3 were revised
to read (and store) variance-covariance matrices
corresponding to multiple attachment nodes then
networks of practically unlimited size could be

solved in stages.

APPENDIX B

NETWORK MODIFYING EOUATIONS

While generating the solubion netwot'k, NET3
mainbains lwo internal data struclures: bhe

rectangular Q-matrix whose size and logical
row/column arrangement dynamically changes,

and the static vector array. We denote them as'
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Q-llatrix: I

I vith respect to root node

I

I

I Border node variance-
I covariance matrix
(slmretric)

Interior node covariances
rith respect to border

Vector array:

Di splacement,/variances betveen border
and 'interior nodes which, like Q, are
revised with each addition of a nev
vector between existing border nodes

The next obserration to be added

(s and/or t is a border node)

Vectors not yet added to the network,
some of which are attached to new nodes

If the dimension of the network is m, then
Xst and the elements QOj in the top row of Q are
each m-component row vectors, while Vst and the'
remaining matrix elements, Qtj, represent
submatrices of older m. In NET3 it is assumed
that all observation variances are scalar multiples
of the unit matrix, so Vst and Qij are actually
stored as scalars (reals).

In addition bo the bwo main structures, the
program maintains an m-vector SS, whose
components are the residual sums of squares for
each network dimension, and an integer NC, the
current number of network circuits. The number
of degrees of freedom is m 1' NC. The unit
variance estimate (UVE) for dimension p is

tSSlp/NrC.

When the network is revised with a new
observation, (Xst, Vst), the program must
perform one of two basic kinds of operations on
the data structures. First, a node addition must
occur when node s is in the border set and node t
is a new (external) node. If node t is lo become a
border node (meaning that it connects lo veclors

Q01 Q02 ... Qob

Qb1 Qbz ... qbb

qb+l,l .. Qb+l,b
O:r,t .. Qb+z,b

Qb+k,l .. Qb+k,b

(x01, v01)
(x12, vl?)
(x02, v02)

(xst, vst)
(x--, v--)

(x--, v--)

still remaining to be added) then the program will
allocate one row and one column of Q to the new
node. The malrix will become.larger only if node s
must still be maintained as a border node. In any
case, if node t is added, the new elements of Q
are simply derived as follows:

Node Addit-ion --

QOt := QOs + Xst,
Q'it := Qis (for .i not 0),
Qti := Qsi (for i <= b),
Qtt := Qss + Vst,
SS, t{C and the vector array are unchanged'

If s happens fo be the root node' lhen it is

nol explicitly represented in Q, as the row/column
elements are necessarily zero. A complication
arises, however, when the root node ceases to be

a border node. In order to delete it (or make it an

interior node) we must change the network
reference. For example, to move the reference to
the node currently occupying column s of Q we

make the following transformation:

Q1r Q12 Qlb
Q21 Q22 Q2b

I

I

I

I

I

I
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Ctange of Reference --

(ps := -Q0s, (Fj := QOj - QOs,

Qss := Qss, Qsj := Qss - Qsj, Qjs := Qss - Qjs
Qij 3= Qss + Qij - Qis - Qsj (for i,j not 0 or
s).

Column s will now correspond to the old
reference node. Although moving the reference is
not strictly required, it reduces the bandwidth by
one and helps limit the size range of elements
QOj.

The second basic operation is a circuib
addition, that is, attaching a new vector (Xst,
Vst) between existing border nodes. This requires
that both Q and the array of previously added
vectors be revised (Cj'is Cj transposed):

Circuit Add'ition --

Qij := Qi j - Ci * ltlst * Cj',
xij := xij - C0 * lrlst * (Cj-Ci)',
vij := vij - (Cj-Ci) * Mst * (Cj-Ci)',
lSSlp := [SS]p + [C0lp * ll,lst * C0'lp,
ilC := ilC+1,

drere Ci = Qit-Qis, C0 = Q0t-Q0s-Xst, and
rst = t/(Vst+Qss+Qtt_Qst_Qts).

Most of the work is in revising Q (first'
equation). In NETS this is done with
approximately one floating-point multiplicatio4
per matrix elemenb. Finally, if either of the two
atbachment nodes is resolved, it is deleted from Q
or else moved to the interior set.
Additional Notes

1) The above transformations should nol
be regarded as explicit program statements. The
notation "A : = B" means "new version of A takes
value of old version of B".

2) Note bhat Qij' = Qji. To help simplify
housekeeping, NET3 stores the complete
symmetric submatrix of Q corresponding to the
border nodes. (Recall that Qij = Qti = Qji' when
Qij is a scalar.) Data elements are never actually
moved; we instead revise a structure of pointers
associated with Q.

3) The algorithm shares a characterisLic
with other "sparse" methods in that the

housekeeping details of managing workspace can
make the program's code seem quite convoluted.
Nonbanded versions of the algorithm are easier to
implement. I wrote an HP-.4lCV calculator
program which stores the input vectors in packed
form on cards or in program memory. It stores
the upper half of a symmetric Q-matrix, which is
considered the result, in data memory. The user
musb keep track of which nodes are being deleted
or retained. For example, the input vector "3 -5
.4 10" will replace the current "node 5" with a
new "node 5" displaced 10 units from "node 3".)
The program will compute complebe inverses with
orders up to 20, or partial inverses with
bandwidths up to 20. A network with 87 nodes,
150 loops, and a bandwidth of 7 took about 45
minutes to process.

4) An inberesting variation of the
algorithm for one-dimensional problems is to
maintain a Z-matrix instead of a Q-matrix, where
Zij is the current displacement variance between
nodes i and j: Zlj = Qii+Qir-Qij-Qli. Similar
modifying equations can be derived. This
representation for networks is attractive because
it does away wibh the arbitrary reference node.

5) My test problems have shown the
algorithm to be quite stable -- more accurate, in
fact, than the popular Choleski method applied to
the corresponding set of - normal equations.
However, since zero observation variances are
allowed, it is possible bo present the algorithm
with fundamentally inconsistent data. This is
revealed in the attempt to add.a vector with zero
variance to a network whose current
displacement variance is already zero, resulting
in Vst*Qss+Qtt-Qst-Qts=0. NIET3 will inform
the user of this, ignore lhe vector, and continue
processing.

APPENDIX C

NET3 SORTING ALGORITHM

NET3 solves a network problem in two
stages. The first stage is a sort, or indexing, of
the input vectors in order to make the actual
solution (second stage) more efficient. The sort is
accomplished by adding edges, one by one, Lo a
connected graph, initially consisting of an
assumed or specified starting node. A node in the
network is considered "resolved" when all edges
that connect bo it have been added. At each step,
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the program examines the remaining edges which
attach to unresolved nodes and assigns them a
ranking as follows:

A "closure" between existing nodes that resolves:

1) two nodes.
2) one node.
3) zero nodes.

A node addition resolving (including added node):

4) two nodes.
5) one node.
6) zero nodes.

Edges in the last three categories are
subranked according to the "score" of the
potentially added node. For each unadded edge
connecting this node to another existing node, we
add "2" to the score if that edge would resolve the
existing node, or "1" otherwise. For each edge
connecting the potential node to anobher exterior
node, we subfract "1" from the score. Edges in
the first three categories are scored the same. We
would finally add the edge in bhe lowest numbered
category with bhe highest score, deciding not quite
arbitrarily between ties. Edges connected to the
"older" unresolved nodes are favored.

The bandwidth corresponding to any
particular starting node is defined as one less'
than the maximum number of unresolved nodes
in the graph during any stage of the process of
adding edges. An efficient algorithm for finding
edge orderings that give the smallest possible
bandwidth probably doesn't exist. Likely, a better
heuristic method than the above can be
discovered by modifying the score function.

APPENDIX D.

NET3 Version 8-82 USER'S GUIDE

The program reads a file of vectol' data
whose name (without the extension) is byped on
the CPIM command line following the program
name. The extension ".NET" is always assumed
for the data file. For example, type "NET3
DAT20" in response to the CPIM command
prompt and the program will expect to find the
file "DAT2O.NET" on bhe default drive. (A drive
can also be specified, as in "B:DAT20".)

Data File Format

The first non-blank character on a line can

signify one of three types of vectors. A plus sign
( + ) indicates that no true observation exists
between nodes naml and nam2, but that a

network displacement and variance is wanted. A
minus sign (-) means that a final
displacement/variance is not needed, but that the
observation will be used to revise the network.
Any other character will be taken as bhe start of
nam1, in which case an observation is present
and a network displacement/variance will be

computed. The remaining items on the line are
separated by spaces and have the following
arrangement,:

naml,nam2 -- Two distinct node names.
The program regards the narn2 first five
characters of each name as significant'

E -- Error standard deviation (E > = 0)'
Normally a decimal number, but lhe program
could be revised to accept a variance-covariance
matrix when the observation is a vector with
correlated components. In this version the
components are assumed uncorrelated, each with
variance V = E*E (or a constant multiple of V).

X -- Observed displacement vector from
naml to nam2. NETS acbepts three decimal
numbers as coordinates. Tpailing blank fields
default to zero.

Since error components are assumed

uncorrelated, each network dimension is in effect
processed independently of the olher dimensions.
The program can safely be used for one-

dimensional and two dimensioneil problems. For
example, in a three-dimensional survey, if the
vertical componenl error variances differ from
bhose of the horizontal components (in ways o[her
than a constant scaling factor) lhen the vertical
and horizontal componenls can be processed as

two separate problems.

The vectors may appear in any order in the
data file as long as they collectively represent a
connected nelwork. This means that a sequence is

possible in which every vector bub bhe first has an
endpoint appearing earlier in the sequence (on a
vector with finibe variance). This condition insures
that all net*'ork variances are finite.
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Output File Format

When the program is executed, the current
capacities with respect to vectors, nodes, and
workspace (in 4-byte units) are written to the
terminal screen. The first overlay, NET3.001'
reads the vector data into memory and the
second overlay, N8T3.002, performs a network
sort (indexing) starting at the frrrst node. If the
resulting bandwidth is too large then indexing is
attempted using different starting nodes. When
indexing is complete, the bandwidth, bandlength,
and numbers of vectors, nodes, and loops are
reported. If available memory is adequate,
overlay NET3.003 is invoked to solve the
network.

Progress during each of the reading,
indexing, and solution phases is indicated on the
ferminal screen by a row of asterisks -- one

asterisk for each five vectors processed. Finally,
the UVE is displayed, and the user is given the
option of creating a text file with extension
".ADJ" containing the results (overlay
N8T3.004).

The optional output file can be processed,
along with the original data, by programs doing
error analysis and/or plotting. The first line
contains the number of components in each
vector, the number of loops (closures) in the
network, and the component sums of squares.'
The remaining lines comprise bhe solution vectors'
The first item on a line is the vector's sequence
number in the input file. (Vectors which were
flagged wibh r'-rr are excluded.) The network
variance appears next, followed by the
components of the estimated displacement. Six-
digit scientific notation is used for the four values.

APPENDIX E

NETERR Version 8-82 USER'S GUIDE

A simple network error analysis program,
NETERR, was written to make use of the
variance and displacemenb information generated

by NET3. An obvious enhancement would be

graphic output that would highlight (with more

vivid colors, for example) vectors with
outstanding error statistics.

The CP/M command is "NETERR filname",
where frlname.NET and filname.ADJ are both
assumed to exist on the default drive. The ADJ
file must have resulted from running program
NET3 with filname.NET as inPut-

A network error analysis is performed by
computing the effects of independently deleting
each observed vector from the statistical model.
(See Appendix A for an explanabion of the
theory.) The user will have the option of
displaying the results on the screen or writing
them to a file, filname.LST. [f you choose to

display the results, be prepared to toggle CNTRL-
S as necessary. You will get just one pass

through the data.

For each solution vector in filname.ADJ
(excluding those flagged with r' + " in
filname.NET), a line will be printed containing
two endpoint names, F and UVE for horizontal
error, F and UVE for vertical error' and the
correction 6,y,2) that would need bo be applied
to the observed vector if it were assumed to be a
blunder (given zero weight). The UVE is the
nefwork UVE after the vector's deletion. Vectors
should be considered suspect. if the statistic F is
relatively large. At the beginning of the printout
are the horizontal and vertical UVE's prior lo any
delerions.

Although in bheory we can devise formal
rules for rejecting vectors (balancing probabilibies
of accepting good observations and rejecting true
blunders), the statistics are probably more useful
as simple guidelines. With experience, the user
should iearn to know what to expecb, depending
on the quality of his surveys and his method of
assigning error variances' To start with' I
suggest he introduce one or more "blunders" in a
typical daba file, then run NET3 and NETERR to

see what effect thev have on the statistics.
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Lighting Up Your Suunto
by Richard Market
Princeton, Indiana

Ever lie in a tight muddy crawl with water dripping on you and try to shine a light over

the top of a Suunto in order to read it? How about hanging it out over a nasty lip while trying to
hold a light over bhe Suunto, while still hanging on ?

There is another way. You do not have to hold a light over a Suunto to read it. The dial

can be lit very easily using a common red LED (light emitting diode)'

All you need is: (1) An LED. (Note: Some LEDs have steel leads which would interfere
rvith the compass reading. Try a magnet before you buy.) (2) Small flexible lead wire, 2O Lo 22

AWG. The more strands in it the better. (3) Battery: voltage of your choice. (4) Resistor: The

value of the resistor is determined by lhe battery voltage and the amount of current you need for
LED operation.

Resistor = Battery Voltage - LED Voltage / Current

The current of the LED should be adjusted to please the eye of the user. You can light the

dial up with only 2 MA (milliamps), while some eyes require more light. You can increase the

..r.r"rrt up to 15 MA on most LEDs which would be too much light for some eyes. The first few

trips you may want to use a variable resistor to help you choose'

Depending on how deep you want to get into this, you can use resin or RTV silicone to

attach the LED to the Suunlo. You can also make an 'L' bracket which mounts under the eyebolt

which holds the cord. Either one of the above does not permanently modify bhe Suunto. However,
if you want, you can drill into into the Suunto to attach or implant the LED. Your imagination is
the only limiting factor.

The LED should be mounted just a littld off center to enable you to read the dial in
daylight or with a overhead light if the unit should fail in the cave. Replace the cord which came

with the Suunto with 1/8-inch braided cord. Remove and discard lhe center of the cord, and feed

the lead wire through the center of the braid. Now you have a flexible wire running through a

braided sheath from the resistor/battery pack to the Suunto, with the sheath holding the Suunto to

eliminate any mechanical pull on the wire. You may want to make the cord a little longer so that
the battery/resistor pack can be placed in a pocket, on the heimet, or clipped to the collar behind

the neck.

You may want to add a switch somewhere in the system, or you could turn the battery
around backwards, or disconnect it until ready to use. If you are only using 5 to 10 MA it would

take some time to run the battery down. (With a 9 volt Nickel-Cadmium battery and 5 N{A on the

LED, the battery would last 20 hours.)

One thing you must remember to do is check your Suunto to make sure you have not

messed up the calibration of the readings. N{ake a rest for sighting, making sure the Suunto is
unable to move. First, take a reading without adding anything to the Suunto. Second, add your

LED system and repeat the above reading. The second reading should be the same as the first or
you have some steel too close. Aluminum, brass, copper and some sLainless steels are non-

magnetic. These materials, as well as plastics can be used on the Suunto without effect. (Since

one's helmet and caving lamp will presumably be teft on while using bhe LED system, it is

important to check these for effect on the instrument as well-- Ed.)

I have been using this syslem for over [wo years now in actual surveying along with the

standard Suunto as the forward or backsight without any problems.
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Army Map-Folding Method Preserves Topos
by Frank Reid

Bloomjngton, Indiana

Topographic maps are expensive these days, and need protection for long life. Rolled and
quarter-folded maps are difFrcult to handle, and wear out quickly.

Since 1967, I have folded all my 7.5-minute topo maps by the following procedure, one of
several folding methods described in U.S. Army Field Manual FM 2l-26: Map Read.ing.

Maps folded this way are easy to store and transport, easy to sort, easy to handle in the
field or car, and they last much longer because any spot on the tndp ean be seen by unfold.ing
only one crease.

Practice first with plain paper.

1.) Fold map in half, top to bottom, with the printed side outward..

2.) Facing the top portion of the half-folded map (with North upward), fold it again from side to
side (vertical crease) so that the title bock in the upper right-hand corner is insid.e.

3.) Fold each half of the quarter-folded map outward (vertical creases again), such that the upper-
right title block is now on the outside (see third illustration).
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SPELEO PRESS Offers New Serviees
Terry Raines reports thal The Speler-r Press has i'ecently acquired a l-inotype Series 100

composition and laser typesett,ing sl'sLLrm. Br-rilt around an Apple Nlaclntosh Plus, the syslem
allorvs word processing with Nll,rcWrite, rrnd gr aphic:s producbion with NlacPaint and MacDraw.
The page description language is Postsclilrt RIP.Outpr-rl is ploduced on a l,inotronic ii00, with ir
resolution of 2540 lines per inch. 'felrv enc()Lil ages those intelesled in typesetting andr'or printing
of books. periodicals or othel crrve ptrblic.tlions to conLnct him. The Speleo Press, PO Box 7037,
Austin. TX 78712 Phone: 5 r2-S 17-2709

UIS Commission on Karst Survey & Mapping
The Commission was reorganized during the 9th ICS, and is now chaired by Ing. Marcel

Lalkovic (c/o Slovenska Speleologicka Spolocnost, Skolska 4, Liptovsky NIikulas, CSSR). In
November or December 1987, the Commission will hold a Symposium entitled "Karstological
Mapping in Environmental Research". Major topics will include:

" delailed karst mapping (legends, symbolJ, contenb)
'F techniques of surface and underground mapping
* typology of karst regions
"' mapping for economic planning and protection

The exact dates of the Symposium, to be held in Slovakia, will be announced in the next UIS
Bulletin.

(From the UIS-BULLETIN, 1986-2 (30), March 1987)

Mexico Maps For Sale
Hard-to-get topographic,

Peter Sprouse. Contact him for
Phone: 512-453-4672.

geologic and general maps
an index map and price list:

of Nlexico are now available from
PO Box 8424, Austin, TX 78713.

New COMPASS & TAPE Editor Sought
Cavers interested in edibing COMPASS & TAPE are invibed to submit a letter of

application to the Section chair (John Ganter, 302 Walker Bldg., Dept. of Geography, Penn Stale
University, University Park, PA 16802 814-865-6421). The candidate should have knowledge in
the field, substantial experience in newsletter production, and access bo facilities for text
processing, printing, ebc.
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