

1

An Evaluation of the Hash Function in CMAP

by Bob Thrun

Hashing converts a character string or to an index
into an array. This is done to facilitate searching
when the number of character strings is much less
than the possible number of character strings. The
technique used in CMAP is called hashing with
chaining. A survey station name is hashed to see
which of many chains (or bins) it belongs to. Then
comparisons need be made only to names in that
particular chain.

One popular hash function is to treat a character
string as a large integer, divide by a prime number,
and use the remainder of the division as the hash
value.

CMAP folds an 8-byte station name to a 4-byte
integer and then divides. In the folding process, the
second four bytes are shifted by two bits so that
transpositions do not hash to the same value; so
ABCD1234 does not hash to the same value as
1234ABCD. This is not a major problem with an 8-
character name limit, but would be more important
with shorter names. The actual hashing process
consists of: shift the second four bytes, XOR the two
halves of the name, divide by the hash divisor, and
then use the remainder of the division as the hash
value. There are some possible variations of this
hashing scheme. The second half of the name could
be shifted by only one bit. The two halves could be
folded together by an AND or SUB operation
instead of the XOR. This scheme resembles the
generation of a Cyclic Redundancy Check (CRC),
though I did not realize it at the time I devised it. It
was simpler to write the hash function in assembly
language than in Fortran. The programs to test the
hashing process are fairly small.

CMAP has an array of links with many chains of
name indices running thru it. The chains are singly-
linked lists. These are like waiting lines where each
individual knows who is in front of him. Initially all
the chains have zero length with zero in the pointers
to the tail of each chain. New stations are added to
the tail of each chain. As stations are added to each
of the chains, the pointer to the tail is updated. The

searching to match a station name starts at the tail of
the chain and goes toward the head. For most
survey shots, one of the stations is likely to have just
been added to the tail of a chain by the previous
shot. The other station is usually new and the search
involves comparing its name to all the other stations
in its chain. If a link pointing to zero is encountered,
the search has reached the head of the line and the
station is new

The searching process along each chain is a linear
search, which is an Order N2 process. If there are N
unique names in the chain, the first name in the
chain involves no comparison of names, the second
name requires one comparison, the third name
requires two comparisons, etc. For N unique names
in a chain, (N-1)N/2 total name comparisons will be
done. If we have each name getting a different hash
value, and no loops or branches in the survey, then
each new shot will require only one name
comparison. Loop closures involve two old stations,
which means the closing shot requires at least two
name comparisons. It is theoretically possible to
generate a series of station names that all hash to the
same value, but very unlikely.

To assess the efficiency of the hashing process, all
the FROM and TO station names from real cave
surveys were read. The number of name comparison
was counted for hash divisors from 10 to 10,000. A
typical set of results is shown in Figure 1. The
tallest spikes are for hash divisors that are powers of
two: 256, 512. 1024, etc. The next tallest spikes are
at combinations of powers of two: 384, 768, etc.
The good and poor performing hash divisor values
were the same for different cave surveys.

To see how the hash function behaves with different
cave surveys, we plotted (comparisons per shot) vs.
(shots/(hash divisor)). The (shots/(hash divisor)) is
the average number of shots in each chain or bin.
The number of shots is used, not the number of
unique station names. A shot always requires two
name searches. There are usually fewer names than
shots. So that the results for different caves could be

2

plotted on the same graph, we ignored the spikes and
got the bottom edge of the data plot by treating it as
the bottom perimeter of a convex hull. All the curves
were generated with hash divisors from 10 to
10,000. The largest surveys had the most compari-
sons per shot. The results from 12 caves are shown
in Figure 2. All the cave surveys had similar station
naming conventions. The asymptotic limit for the
number of comparisons per shot depends on the ratio
of loops to shots. If each new shot links to the
previous shot, then there will be many shots where
the old station is matched with one comparison.
Reducing the number of comparisons reaches a point
of diminishing returns when the time spent doing
name comparisons becomes smaller than the time
spent reading characters and doing the trig and other
math on the survey shots.

10 100 1000 10000
Hash Divisor

1

10

100

1000

C
om

pa
ris

on
s

pe
r S

ho
t

8464 shots

Figure 1. Typical variation of the number of
comparisons with the hash divisor.

0.0001 0.001 0.01 0.1 1 10 100
(Hash Divisor) / (Number of Shots)

1

10

100

1000

10000

C
om

pa
ris

on
s

pe
r S

ho
t

10000 1000 100 10 1 0.1
Shots / (Hash Divisor)

Figure 2. Composite hull bottom for a wide range of survey sizes.

